Draft Learning Progression (LP) for Urban Heat Island (UHI) Effect MADE CLEAR UM Learning Sciences Research Group

www.ClimateEdResearch.org November 28, 2012

	Level 1 (Lower Anchor)	Level 2	Level 3	Level 4 (Upper Anchor)
	"Informal Accounts"	"Causal Sequences with	"School Science	"Qualitative Model-
		Hidden Mechanisms"	Narratives"	Based Accounts"
Potential UHI LP	EA1: Energy is	EA2: Energy is	EA3: Energy is	EA4: Energy is
indicator based on	associated with life,	associated with a	associated with	associated with its
Jin & Anderson (2012,	conditions, or feelings:	physical necessity	different sources:	transfer and
pp. 1161-1162)	Students state that the	powering hidden	Students state that	transformation through
	sunlight enables urban	processes or under-	energy can come from	different materials:
"EA" stands for energy	surfaces and air to	going changes in hidden	sunlight or from hot	Students state that
association	become hot (by its	processes: Students state	urban surfaces that	sunlight is absorbed by
	presence) or cold (by its	that sunlight energy is	release infrared	urban surfaces
	absence). Students fail to	needed to heat materials	radiation. They	(differentially),
	understand that the air	in an urban environment,	understand that	transforming into
	continues to warm after	and that different	radiation from the sun	sensible or latent heat,
	the sun goes down.	materials absorb	can warm surfaces	kinetic energy, and
		different amounts of this	(differentially), and	infrared radiation. This
		energy. Students begin	radiation from surfaces	energy can then be
		to understand that	can warm the air.	transferred to other
		energy is released from		surfaces, the atmosphere,
		hot objects through		or space.
		invisible radiation.		
Potential UHI LP	ET1: Energy is traced	ET2: Energy is traced	ET3: Energy is traced	ET4: Energy is traced
indicator based on	using a cause-effect	through mixing	through conversions in	through transformations
Jin & Anderson (2012,	chain, with actions,	processes between	physical processes:	and transfers among
pp. 1161-1162)	functions, physical	materials and energy:	Students state that light	different materials:

This material is based on work supported by the National Science Foundation under Grant No. 1239758 CCEP-II: MADE-CLEAR. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

"ET" stands for energy tracing	interaction, or conditions acting as causal mechanisms: Students state that sunlight provides surfaces with the conditions for getting hot. They hit/touch surfaces, move inside of them, and are used up or move into the environment.	Students describe processes in which sunlight is mixed with surface materials to make heat. The heat can then move and combine with the air, which becomes warmer.	energy may turn into heat or radiation, which is released into the environment. However, students fail to use the law of conservation of energy consistently as a constraining principle.	Students explain how radiation is absorbed or reflected from the sun, depending on the properties of surface materials. After materials absorb radiation, energy can be transferred to the air through convection or evapotranspiration, or to air or other surfaces through radiation. Students use the law of conservation of energy consistently to explain the urban surface-air energy budget.
Potential UHI LP indicator about the role of different materials "M" stands for materials	M1: Materials are treated as actors that become warm when enablers like sunlight are present.	M2: Materials are used to explain that some surfaces become warmer than other surfaces in response to sunlight, causing a warmer environment.	M3: Materials are used to explain that different surfaces absorb, retain, and transfer different amounts of energy, which then heats the environment differentially.	M4: Materials are used to explain how and why different surfaces absorb, retain, and transfer different amounts of energy throughout the day.
Potential UHI LP indicator about the role of vegetation and water in the urban heat island	VW1: Vegetation and water are identified as factors that enable environments to be	VW2: Vegetation and water are used to describe landscapes that do not absorb as much	VW3: Vegetation and water are used to explain how vegetation provides shade,	VW4: Vegetation and water are used to explain how vegetation provides shade, lowering surface

This material is based on work supported by the National Science Foundation under Grant No. 1239758 CCEP-II: MADE-CLEAR. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

effect "VW" stands for vegetation and water	cooler.	sunlight energy or change temperature as readily.	lowering surface temperatures, and water absorbs energy without changing temperature readily.	temperatures, as well as how water in vegetation acts to dissipate ambient heat through evapotranspiration. Additionally, bodies of water can act as "heat sinks," due to water's high specific heat.
Potential UHI LP indicator about mitigation strategies for the urban heat island effect "MS" stands for mitigation strategies	MS1: Students are aware that there are factors that contribute to the heat island effect, but they are not able to identify specifics.	MS2: Students are able to identify the sources that contribute to the UHI (e.g. pavement, lack of vegetation), but are not able to explain how they influence the urban heat island effect.	MS3: Students are able to identify sources that contribute to the UHI effect (e.g. pavement, lack of vegetation), and explain how these sources contribute to the UHI effect, but are not able to use models to predict outcomes of changes to the sources.	MS4: Students are able to use models to predict outcomes when given various scenarios about changing attributes of a UHI (e.g. a park densely populated with trees is converted into an athletic stadium with large parking lots).

Reference:

Jin, H. & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. *Journal of Research in Science Teaching*, 49(9), 1149-1180.

Next Generation Science Education Standards Draft

This material is based on work supported by the National Science Foundation under Grant No. 1239758 CCEP-II: MADE-CLEAR. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.