Examining a Process for Developing a Learning Progression for Sea Level Rise

NARST Annual International Conference, Chicago, IL April 11, 2015

Wayne Breslyn, J. Randy McGinnis, and Emily Hestness

Project MADE-CLEAR

Maryland and Delaware Climate Change Assessment and Research Project

NSF funded Phase II Climate Change Education Partnership (CCEP) grant.

www.madeclear.org

www.ClimateEdResearch.org

Why Sea Level Rise?

A major impact of climate change.

- Little research on student understanding of SLR.
- Highly relevant to students in MD and DE.

Research Question

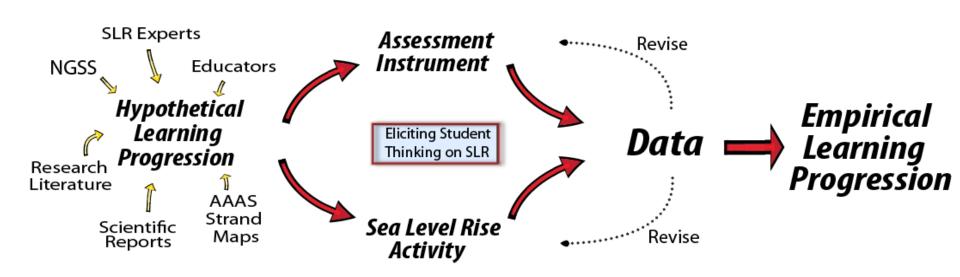
How can learners come to understand sea level rise in a progressively more sophisticated manner?

Goal

Develop an conditional empirically supported learning progression on the topic of sea level rise.

Theoretical Perspectives

Learning progressions as descriptions of the increasingly sophisticated ways that learners think about a science topic over time (Duschl, Schweingruber, & Shouse, 2007).


Section of the Conditional SLR Learning Progression: Impacts of Sea Level Rise

	Level 1 (Lower Anchor)	Level 2	Level 3	Level 4 (Upper Anchor)
Potential SLR LP	I1: Students identify that	I2: Students understand	I3: Students understand	I4: Students understand that
indicator about impacts	an impact of sea level	that sea level is	that local impacts of sea	local sea level changes can
of sea level rise	rise is that some land in	projected to rise in the	level changes can	differ from global trends
	coastal areas and islands	future and are able to	differ, but cannot	based on regional variations
"I" stands for impacts	will be underwater,	identify a limited	explain primary factors	in factors such as geographic
	though they are not able	number of specific	that can cause this	uplift or subsidence and
	to elaborate on specific	consequences, though	difference. Students are	ocean currents. Students are
	consequences of sea	they do not understand	able to elaborate on	able to elaborate on specific
	level rise.	that sea level change	specific consequences	consequences of local sea
		will have local effects	of sea level rise such as	level rise. Students recognize
		including those related	loss of habitat, in-land	that sea level rise projections
		to storm surge.	flooding during storms,	are based on available data
			property loss, and	and may be lower or higher
			erosion.	than predicted.

Theoretical Perspectives

Literature on conceptual change and alternative conceptions contributed to the development of our assessment instrument and learning progression.

Research Design

Sea Level Rise Assessment Instrument

- Developed based on our LP.
- Piloted with middle school students (N=60).
- Tested and revised with:
 - pre-service teachers (N=50)
 - in-service teachers (N=30)
 - middle school students (N=5)
- Received feedback from sea level rise experts (N=3).

Sea Level Rise Assessment Item

Description of Situation

The amount of greenhouse gases in the atmosphere is increasing.

Question

How is this related to sea level rise?

Select the *best* response.

More greenhouse gases will lead to an increase in global temperature causing:

A. oxygen and nitrogen gases to dissolve in water, increasing sea volume.

B. ice on land melting and thermal expansion of sea water, increasing sea volume.

C. the number and size of water molecules to increase, increasing sea volume.

D. the atmospheric pressure above the seas to increase and push water towards land.

Why is this the best explanation?

AAAS Project 2061, n.d.; Herrmann-Abell & DeBoer, 2008

Sea Level Rise Assessment Item

Description of Situation

Sea level is projected to rise between 1 and 4 feet by the year 2100, with an additional rise of 2

feet possible*.

Question

Why is sea level rising?

Select the

A. Increased ultraviolet radiation reaching the earth due to the hole in the ozone layer.

best

B. Increased rain and snowfall are adding to the amount of water in the seas.

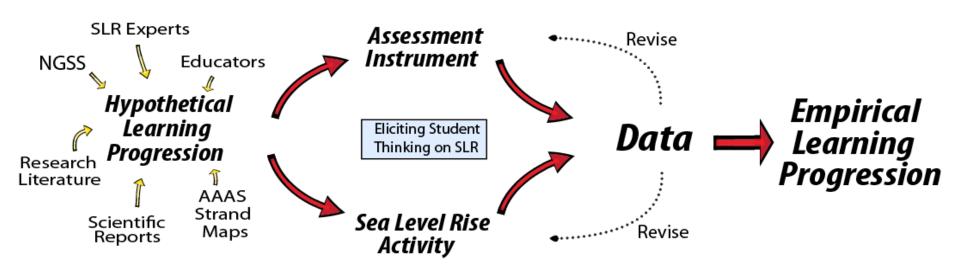
response.

C. Shifts in plate tectonics reorganizing the shape of the sea floor.

D. An increase in global temperatures is causing ice on land to melt, increasing sea volume.

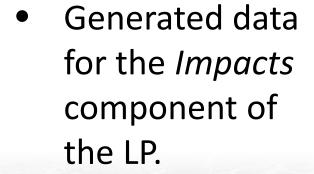
Why is this the best explanation?

Dove (1996); Ekborg & Areskoug (2006); Hestness et al. (2011), Lambert et al. (2012); Matkins & Bell (2007); Michail et al. (2007); Papadimitriou (2004); Wise (2010)


^{*} U.S. Global Change Research Program (2014). Chapter 2: Our Changing Climate (p. 45). In *Climate change impacts in the United States: The Third National Climate Assessment*. Available at: http://nca2014.globalchange.gov/report/our-changing-climate/sea-level-rise

Climate Change Alternative Conceptions

Alternative Conceptions	Study		
Global warming is caused by a hole in the ozone	Dove (1996); Ekborg and Areskoug (2006); Hestness et al. (2011); Lambert et al. (2012); Matkins and Bell (2007); Michail et al. (2007); Papadimitriou (2004); Wise (2010)		
Global warming causes skin cancer	Dove (1996); Ekborg and Areskoug (2006); Groves and Pugh (1999); Michail et al. (2007)		
The greenhouse effect is caused by a lid or blanket that traps heat	Dove (1996); Ekborg and Areskoug (2006); Lambert et al. (2012); Papadimitriou (2004)		
The carbon cycle acts like a filter that cleans the air	Lambert et al. (2012)		
Confusion about weather vs. climate	Lambert et al. (2012); Papadimitriou (2004)		
Greenhouse gases are "trapped" in the atmosphere	Lambert et al. (2012)		
Global warming will cause decreased precipitation (drier conditions) in all locations	Dove (1996)		
Global warming will enhance photosynthesis through increased solar radiation	Dove (1996)		
Climate change is controversial in the scientific community	Matkins and Bell (2007); Wise (2010)		
Increasing the greenhouse effect would increase earthquake frequency	Groves and Pugh (1999)		
Using unleaded gasoline can reduce the greenhouse effect	Groves and Pugh (1999)		
Nuclear power or weapons contribute to the greenhouse effect as much as coal power	Groves and Pugh (1999); Papadimitriou (2004)		
Environmental pollution generally causes global warming	Papadimitriou (2004)		
Acid rain causes global warming	Groves and Pugh (1999); Papadimitriou (2004)		
The greenhouse effect is unnatural	Matkins and Bell (2007); Michail et al. (2007)		


Hestness, E., McDonald, R. C., Breslyn, W., McGinnis, J. R., & Mouza, C. (2014). Science Teacher Professional Development in Climate Change Education Informed by the Next Generation Science Standards. *Journal of Geoscience Education*, 62(3), 319-329.

Research Design

Sea Level Rise Online Activity

- Developed based on our LP.
- Tested and revised with:
 - pre-service teachers (N=60 in 2013 & N=60 in 2014)
 - in-service teachers (N=30)
 - middle school students (N=5)

development of technologies to mitigate their effects.

MS-ESS3-4 Construct an argument supported by evidence for how increases in human consumption of natural resources mpact Earth's systems.

HS-ESS3-5: Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems

Step 3. Based on what you observed on the maps, predict the impacts of sea level rise, a local effect of climate change, on Assateague Island and surrounding areas. Think about how the impact will affect 1. human safety, 2. economic activity and tourism, and 3. ecosystems. Some things to consider are:

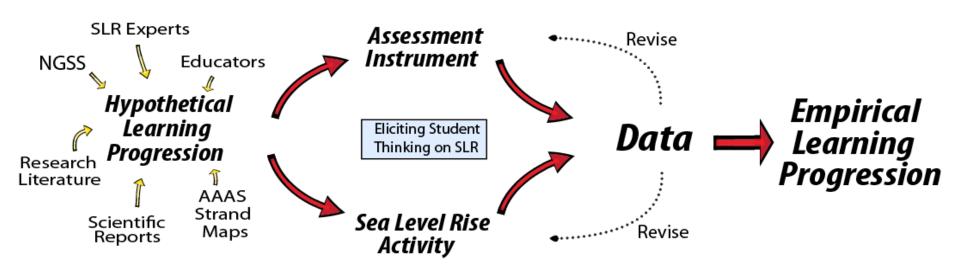
- Increased storm damage and inland flooding. Damage and possibly loss of costal ecosystems.
- · Increased erosion of shorelines and beaches.
- . Economic impacts (tourism, fisheries, property loss).
- · Salt water intrusion into aquifers and surface waters. · Loss or decreased agricultural production.

Use the two maps below to investigate the potential impacts of sea level rise. The first map provides satellite imagery to view landscape features, buildings, roads, etc.

The second provides an interactive map of the same area and allows you to view the extent of sea level rise for different projections. Briefly note your observations from the two maps in your Online Sea Level Investigation Guide

Sea Level Rise Activity

Write down three things you already know about sea level rise e.g., (why it's happening, factors causing it, impacts on communities and ecosystems).


Middle School Students

In the Online SLR Activity, middle school students responded to the prompt "Write down three things (or more) you already know about sea level rise..." in a more limited manner citing melting of ice sheets, ozone as a cause of sea level rise, and global warming as a cause for sea level rise. For impacts the focus was on flooding and on polar bears and penguins.

Elementary Science Methods Students (Preservice Teachers)

	Impacts of Sea Level Rise				
	Flooding (15)	More powerful storms (6)	Human habitats affected (2)		
Islands/Beaches/Land Coastlines under water (4)		Coastlines under water (4)	Coastal cities uninhabitable. (1)		
disappearing (12) Pop. near coast affected (2)		Pop. near coast affected (2)	Threat to communities below sea level. (1)		
K. Carre	Erosion (10) Communities will need to relocate. (2)		Longer planting seasons. (1)		
100	Property loss (6)	Land "sinks" (not subsidence) (2)	Negative impact on farmland/plants. (1)		

Research Design

Conditional SLR Learning Progression

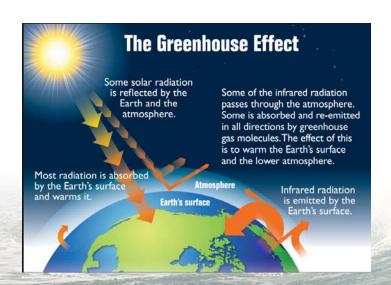
Mechanisms of Sea Level Rise

	Level 1 (Lower Anchor)	Level 2	Level 3	Level 4 (Upper Anchor)
Potential SLR LP indicator based on Gunckel, Covitt, Salinas & Anderson (2012, p. 854) "SM" stands for scale and mechanisms	SM1: Students explain sea level rise on a macroscopic scale only, focusing on immediately visible structures or phenomena without including mechanisms for phenomena.	SM2: Students explain sea level rise on a broad macroscopic to large-scale focus across familiar and visible dimensions. Students can identify a mechanism, though they rely on actors or agents.	SM3: Students explain sea level rise on the microscopic to the landscape scale, though they may refer to smaller particles such as atoms or molecules. Students are able to put events in order, but do not include driving forces or constraining factors.	SM4: Students explain sea level rise on the atomic-molecular scale. Students use driving forces (e.g. gravity), as well as constraining factors (e.g. topography) to explain changes in sea level.

Representations of Sea Level Rise

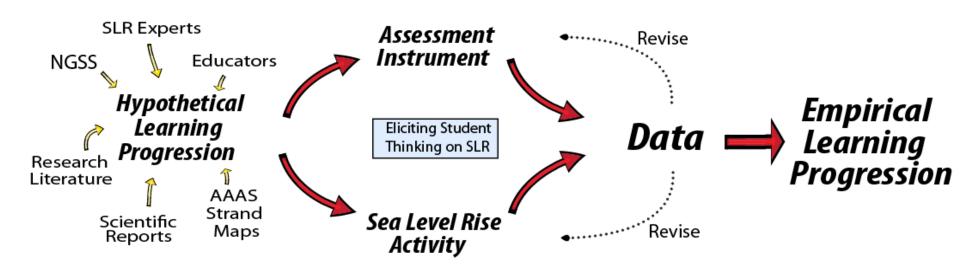
	Level 1 (Lower Anchor)	Level 2	Level 3	Level 4 (Upper Anchor)
Potential SLR LP	R1: Students are able to	R2: Students are able to	R3: Students are able to	R4: Students are able to
indicator based on	obtain useful	make limited	connect representations	interpret driving forces
Gunckel, Covitt, Salinas	information from	connections between the	of sea level rise to the	and constraining factors
& Anderson (2012, p.	representations related to	physical world and	three-dimensional	related to sea level
854)	sea level rise, though	representations related to	physical world, but do	changes based on
	they are not able to	sea level rise.	not infer driving forces	representations.
"R" stands for	connect these		or constraining	
romrogantations	representations to the		voriables	

Causes of Sea Level Rise


	Level 1 (Lower Anchor)	Level 2	Level 3	Level 4 (Upper Anchor)
Potential SLR LP	C1: Students identify	C2: Students recognize	C3: Students	C4: Students understand that
indicator about causes of	global warming due to	that global warming	understand that sea	sea level rise scenarios are
sea level rise	the enhanced greenhouse	causes sea level rise, but	level rise scenarios are	based on thermal expansion
	effect as a cause of sea	are not able to identify	based on thermal	and terrestrial ice melt, and
"C" stands for causes	level rise.	factors such as thermal	expansion and ice melt	they are able to explain these
		expansion and ice melt	(not distinguishing	factors using atomic-
		(not distinguishing	between terrestrial and	molecular models
		between terrestrial and	see ice), though they do	consistently.
		see ice). Students are	not consistently relate	
		also able to identify a	these factors to atomic-	
		mechanism that relies on	molecular models.	
		actors or agents.		

Impacts of Sea Level Rise

	Level 1 (Lower Anchor)	Level 2	Level 3	Level 4 (Upper Anchor)
Potential SLR LP	I1: Students identify that	I2: Students understand	I3: Students understand	I4: Students understand that
indicator about impacts	an impact of sea level	that sea level is	that local impacts of sea	local sea level changes can
of sea level rise	rise is that some land in	projected to rise in the	level changes can	differ from global trends
	coastal areas and islands	future and are able to	differ, but cannot	based on regional variations
"I" stands for impacts	will be underwater,	identify a limited	explain primary factors	in factors such as geographic
	though they are not able	number of specific	that can cause this	uplift or subsidence and
	to elaborate on specific	consequences, though	difference. Students are	ocean currents. Students are
	consequences of sea	they do not understand	able to elaborate on	able to elaborate on specific
	level rise.	that sea level change	specific consequences	consequences of local sea
		will have local effects	of sea level rise such as	level rise. Students recognize
		including those related	loss of habitat, in-land	that sea level rise projections
		to storm surge.	flooding during storms,	are based on available data
			property loss, and	and may be lower or higher
			erosion.	than predicted.


SLR Alternative Conceptions

- Significance of Scale of sea level rise.
- **Timeframe** over which sea level rise takes place.
- Role of Ozone

Sea Level Rise Learning Progression

Next Steps: Collect further data and refine LP.

Examining a Process for Developing a Learning Progression for Sea Level Rise

NARST Annual International Conference, Chicago, IL April 11, 2015

MADE CLEAR Learning Sciences Research Team

University of Maryland: J. Randy McGinnis, Wayne Breslyn, Emily Hestness, Chris McDonald, Katy Wellington

University of Delaware: Nancy Brickhouse, Chrystalla Mouza, Andrea Drewes

Towson University: Asli Sezen-Barrie